Learning to translate from graded and negative relevance information

نویسندگان

  • Laura Jehl
  • Stefan Riezler
چکیده

We present an approach for learning to translate by exploiting cross-lingual link structure in multilingual document collections. We propose a new learning objective based on structured ramp loss, which learns from graded relevance, explicitly including negative relevance information. Our results on English-German translation of Wikipedia entries show small, but significant, improvements of our method over an unadapted baseline, even when only a weak relevance signal is used. We also compare our method to monolingual language model adaptation and automatic pseudo-parallel data extraction and find small improvements even over these strong baselines.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Document Image Retrieval Based on Keyword Spotting Using Relevance Feedback

Keyword Spotting is a well-known method in document image retrieval. In this method, Search in document images is based on query word image. In this Paper, an approach for document image retrieval based on keyword spotting has been proposed. In proposed method, a framework using relevance feedback is presented. Relevance feedback, an interactive and efficient method is used in this paper to imp...

متن کامل

Task 3a: Team YORKU

We used learning-to-rank methods for training ranking model. Due to the limited number of training queries, we split them and conducted 5-fold cross validation. We set the proportion of training and testing as 4 : 6. For the features used in learning the model, a total of 231 features that are from multiple information retrieval models with different parameter settings were adopted. For the bas...

متن کامل

Advertising Keyword Suggestion Using Relevance-Based Language Models from Wikipedia Rich Articles

When emerging technologies such as Search Engine Marketing (SEM) face tasks that require human level intelligence, it is inevitable to use the knowledge repositories to endow the machine with the breadth of knowledge available to humans. Keyword suggestion for search engine advertising is an important problem for sponsored search and SEM that requires a goldmine repository of knowledge. A recen...

متن کامل

On Penalising Late Arrival of Relevant Documents in Information Retrieval Evaluation with Graded Relevance

Large-scale information retrieval evaluation efforts such as TREC and NTCIR have tended to adhere to binary-relevance evaluation metrics, even when graded relevance data were available. However, the NTCIR-6 Crosslingual Task has finally started adopting graded-relevance metrics, though only as additional metrics. This paper compares three existing graded-relevance metrics that were mentioned in...

متن کامل

Matching Scores of System Relevance and User-Oriented Relevance in SID, ISC and Google Scholar

Background and Aim: The main aim of Information storage and retrieval systems is keeping and retrieving the related information means providing the related documents with users’ needs or requests. This study aimed to answer this question that how much are the system relevance and User- Oriented relevance are matched in SID, SCI and Google Scholar databases. Method: In this study 15 keywords of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016